Transition Maths and Algebra with Geometry

Tomasz Brengos

Lecture Notes Electrical and Computer Engineering

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

- 2 Eigenvalues and eigenvectors
- 3 Geometric interpretation
- Applications of eigenvalues and eigenvectors
 PageRank

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

э

Linear mappings: definition

Definition

Let V and W be two vector spaces over a field \mathbb{K} . A mapping $F: V \to W$ is called a *linear mapping* if it satisfies the following conditions:

•
$$F(v_1 + v_2) = F(v_1) + F(v_2)$$
 for any $v_1, v_2 \in V$,

•
$$\lambda \cdot F(v) = F(\lambda \cdot v)$$
 for any $v \in V$ and $\lambda \in \mathbb{K}$.

Let $V = W = \mathbb{R}$. Any linear mapping from \mathbb{R} to \mathbb{R} is of the form

$$y = a \cdot x$$

for some $a \in \mathbb{R}$. Standard examples of linear mappings: rotation by a given angle (in more dimiensions), length multiplication etc.

Linear mappings: basic facts

Theorem

For any linear mapping $F: V \rightarrow W$ we have

F(0) = 0.

Proof...

Theorem

Any mapping $F: V \to W$ is linear iff

 $F(\lambda \cdot v_1 + v_2) = \lambda \cdot F(v_1) + F(v_2) \text{ for any } v_1, v_2 \in V \text{ and any } \lambda \in \mathbb{K}.$

Proof...

イロト 不得 ト イヨト イヨト 二日

Some more examples and counterexamples

Example

The following mapping $f : \mathbb{R}^3 \to \mathbb{R}^2$ is linear:

$$f(x, y, z) = (x + y, z - x)$$

Example

The following mapping $f : \mathbb{R}^3 \to \mathbb{R}^2$ is not linear:

f(x, y, z) = (x + y, 2z + 1)

э

Linear mappings $F : \mathbb{K}^n \to \mathbb{K}^m$

Here, we will only focus on $F : \mathbb{K}^n \to \mathbb{K}^m$. The general case is similar, yet symbolically more complicated. We will write all our vectors as columns.

Theorem

Let $A \in M_n^m(\mathbb{K})$ be an $m \times n$ matrix over \mathbb{K} . The mapping $F : \mathbb{K}^n \to \mathbb{K}^m$ defined for any $v \in \mathbb{K}^n$ by

$$F(v) = A \cdot v$$

is a linear mapping.

- 4 同 1 - 4 回 1 - 4 回 1

Let

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & 1 & 1 \end{array}\right).$$

Let us write an explicit formula for mapping $F(v) = A \cdot v$.

イロト イポト イヨト イヨト

Э

Linear mappings $F : \mathbb{K}^n \to \mathbb{K}^m$

Here, we will only focus on $F : \mathbb{K}^n \to \mathbb{K}^m$. The general case is similar, yet symbolically more complicated.

Theorem

Let $F : \mathbb{K}^n \to \mathbb{K}^m$ be a linear mapping and let M(F) be a matrix defined by

$$M(F) = (F(1, 0, ..., 0)^T, F(0, 1, ..., 0)^T, ..., F(0, ..., 0, 1)^T).$$

Then

$$F(v) = M(F) \cdot v.$$

Proof - homework!

イロト イポト イヨト イヨト

3

Example

Consider the linear mapping $F : \mathbb{R}^3 \to \mathbb{R}^2$ given by:

$$F(x, y, z) = (x + y, z - x)$$

Let's find M(F).

イロト イポト イヨト イヨト

Э

Linear mappings and matrices: examples

Given a vector $\mathbf{v} \in \mathbb{K}^n$ the product $A\mathbf{v}$ can be thought of as the image of \mathbf{v} under the mapping A.

Example

Fix
$$\alpha \in [0, 2\pi)$$
 and consider the matrix $R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.
What is the image $R_{\alpha}\mathbf{v}$ for a vector $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$?

Example

Consider the matrix
$$A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$
. What is the image $A\mathbf{v}$ for a vector $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$?

- 2 Eigenvalues and eigenvectors
- 3 Geometric interpretation
- Applications of eigenvalues and eigenvectors
 PageRank

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

э

11/3

Eigenvalue: definition(s)

Definition

Let A be a $n \times n$ matrix over the field \mathbb{K} . A scalar $\lambda \in \mathbb{K}$ is called *eigenvalue* of A if there is a non-zero vector $\mathbf{v} \in \mathbb{K}^n$ such that

$$A\mathbf{v} = \lambda \cdot \mathbf{v}.$$

Equivalently, the definition can be restated as follows.

Definition

Let A be a $n \times n$ matrix over the field \mathbb{K} . A scalar $\lambda \in \mathbb{K}$ is called *eigenvalue* of A if

$$det(A - \lambda \cdot I) = 0.$$

イロト イポト イヨト イヨト

э

Eigenvalue: definition(s)

Proof:

" \Rightarrow ": Let **v** be a non-zero vector such that for $\lambda \in \mathbb{K}$ satisfies:

$$A\mathbf{v} = \lambda \cdot \mathbf{v}.$$

Hence,

$$A\mathbf{v} - \lambda \cdot \mathbf{v} = \mathbf{0},$$

(A - \lambda \cdot I) \cdot \mathbf{v} = \mathbf{0}

This means that the system $(A - \lambda \cdot I)X = \mathbf{0}$ has a non-zero solution. This is only when $det(A - \lambda \cdot I) = 0$.

イロト イポト イヨト イヨト

13/3

Eigenvalue: definition(s)

Proof:

" \Leftarrow ": Assume that for $\lambda \in \mathbb{K}$ we have $det(A - \lambda \cdot I) = 0$. This means that there is a non-zero solution to the system $(A - \lambda \cdot I)X = \mathbf{0}$. Let v be this non-zero solution. Then

$$(A - \lambda \cdot I) \cdot \mathbf{v} = \mathbf{0},$$

$$A\mathbf{v} - \lambda \cdot \mathbf{v} = \mathbf{0},$$

$$A\mathbf{v} = \lambda \cdot \mathbf{v}.$$

イロト イポト イヨト イヨト

-

Eigenvectors

Definition

A vector $\mathbf{v} \in \mathbb{K}^n$ is called *an eigenvector* for an eigenvalue λ if

$$A \cdot \mathbf{v} = \lambda \cdot \mathbf{v}.$$

Theorem

Let λ be an eigenvalue of A. The set W_{λ} of all eigenvectors for λ is a subspace of \mathbb{K}^n .

Proof: Note that $\mathbf{0} \in W_{\lambda}$. Moreover, for $\mathbf{v_1}, \mathbf{v_2} \in W_{\lambda}$ we see that

$$A(\mathbf{v}_1 + \mathbf{v}_2) = A\mathbf{v}_1 + A\mathbf{v}_2 = \lambda \cdot \mathbf{v}_1 + \lambda \cdot \mathbf{v}_2 = \lambda \cdot (\mathbf{v}_1 + \mathbf{v}_2).$$

Hence, $\mathbf{v_1} + \mathbf{v_2} \in W_{\lambda}$. Similarly we prove that for $\mathbf{v} \in W_{\lambda}$, the vector $k \cdot \mathbf{v}$ belongs to W_{λ} for any $k \in \mathbb{K}$.

Example 1

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 0 & 1 & 1 \end{pmatrix} \quad A - \lambda \cdot I = \begin{pmatrix} 1 - \lambda & 0 & 2 \\ 0 & -1 - \lambda & 3 \\ 0 & 1 & 1 - \lambda \end{pmatrix}$$

We calculate

$$det(A - \lambda \cdot I) = \begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & -1 - \lambda & 3 \\ 0 & 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda) \cdot \begin{pmatrix} -1 - \lambda & 3 \\ 1 & 1 - \lambda \end{pmatrix} = (1 - \lambda) \cdot ((-1 - \lambda) \cdot (1 - \lambda) - 3) = (1 - \lambda) \cdot (\lambda^2 - 4) = (1 - \lambda) \cdot (\lambda - 2) \cdot (\lambda + 2).$$

The eigenvalues of A are 1, 2, -2.

イロト イボト イヨト イヨト

3

Example 1

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 0 & 1 & 1 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 0 & 2 \\ 0 & -1 - \lambda & 3 \\ 0 & 1 & 1 - \lambda \end{pmatrix}$$

For $\lambda = 1$ the eigenvectors are solutions to the following equation:

$$\left(\begin{array}{rrr} 0 & 0 & 2 \\ 0 & -2 & 3 \\ 0 & 1 & 0 \end{array}\right) \cdot X = \mathbf{0}$$

イロト イポト イヨト イヨト

Э

Example 1

After row reduction we get an equivalent system:

$$\left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \cdot X = \mathbf{0}$$

The solution space (the eigenvector space for $\lambda = 1$) is:

$$W_1 = \left\{ \left(\begin{array}{c} x \\ 0 \\ 0 \end{array} \right) \mid x \in \mathbb{R} \right\}$$

<ロト <同ト < ヨト < ヨト

-

Example 1

For $\lambda = 2$ the eigenvectors are solutions to the following equation:

$$\left(egin{array}{ccc} -1 & 0 & 2 \ 0 & -3 & 3 \ 0 & 1 & -1 \end{array}
ight)\cdot X = {f 0}$$

After row reduction we get the following equivalent system:

$$\left(\begin{array}{rrrr} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right) \cdot X = \mathbf{0}$$

<ロト <同ト < ヨト < ヨト

Example 1

The solution space (the eigenvector space for $\lambda = 2$) is:

$$W_2 = \left\{ \begin{pmatrix} 2 \cdot z \\ z \\ z \end{pmatrix} \mid z \in \mathbb{R} \right\}$$

イロト イポト イヨト イヨト

Э

20/3

Example 1

Finally $\lambda = -2$ the eigenvectors are solutions to the following equation:

$$\left(\begin{array}{rrr} 3 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \end{array}\right) \cdot X = \mathbf{0}$$

After row reduction we get the following equivalent system:

$$\left(\begin{array}{rrrr} 1 & 0 & \frac{2}{3} \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{array}\right) \cdot X = \mathbf{0}$$

イロト イポト イヨト イヨト

-

Example 1

The solution space (the eigenvector space for $\lambda = -2$) is:

$$W_{-2} = \left\{ \begin{pmatrix} -\frac{2}{3} \cdot z \\ -3z \\ z \end{pmatrix} \mid z \in \mathbb{R} \right\}$$

イロト イポト イヨト イヨト

Э

22/3

Remarks

Fact

For a $n \times n$ matrix A there are at most n different eigenvalues of A.

Remark

It may happen so that a matrix A has no eigenvalues over a field \mathbb{K} or some eigenvalues are multiple ones.

<ロト <同ト < ヨト < ヨト

Example 2

Consider the matrix A over the field \mathbb{R} :

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Then:

$$det(A - \lambda \cdot I) = \left| \begin{array}{cc} -\lambda & -1 \\ 1 & -\lambda \end{array} \right| = \lambda^2 + 1.$$

The equation $\lambda^2 + 1 = 0$ has no solution over \mathbb{R} .

イロト イボト イヨト イヨト

Э

24/3

Example 3

Consider the 3×3 matrix *I*:

$$\left(\begin{array}{rrrr}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right)$$

Then:

$$det(I-\lambda \cdot I) = \left| egin{array}{ccc} 1-\lambda & 0 & 0 \ 0 & 1-\lambda & 0 \ 0 & 0 & 1-\lambda \end{array}
ight| = (1-\lambda)^3.$$

The only solution is $\lambda = 1$.

イロト イポト イヨト イヨト

Э

25/3

Basic properties

Fact

If λ is an eigenvalue of A then it also is an eigenvalue of A^{T} .

Proof...

イロト イポト イヨト イヨト

3

Contents

Linear mappings

- 2 Eigenvalues and eigenvectors
- Geometric interpretation
- Applications of eigenvalues and eigenvectors
 PageRank

(4 同) (1 日) (1 日)

э

イロト イヨト イヨト イヨト

୬ < ୍ 28/3

Ξ

PageRank

Contents

Linear mappings

- 2 Eigenvalues and eigenvectors
- 3 Geometric interpretation
- Applications of eigenvalues and eigenvectors
 PageRank

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

-

Contents

1 Linear mappings

- 2 Eigenvalues and eigenvectors
- 3 Geometric interpretation
- Applications of eigenvalues and eigenvectors
 PageRank

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

PageRank

-

Web graphs

PageRank

Web graph: Web pages = nodes, Links = edges (arrows).

Э

31/3

(4 同) (1 日) (1 日)

PageRank

Web graph example and stochastic matrix

Definition

In a web graph G for a vertex v let l_v denote the number of outgoing edges with a starting point v.

In our example $l_1 = 1, l_2 = 0, l_3 = 2, l_4 = 3$.

Definition

For any web graph G define its stochastic matrix S whose ij-th entry s_{ij} equals $\frac{1}{l_i}$ whenever there is a link from *i* to *j* otherwise $s_{ij} = 0$. If $l_i = 0$ then we put $s_{ii} = 1$.

PageRank

Web graph example and stochastic matrix

(4 同) (1 日) (1 日)

33/37

э

PageRank

Stochastic matrix

Fact

For a stochastic matrix S of a web graph G we have

•
$$0 \le s_{ij} \le 1$$
 for any ij
• $S \cdot \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix}$
• $\lambda = 1$ is an eigenvalue of S (and S^T)

イロト イポト イヨト イヨト

Э

Stochastic matrix

Let w be vector whose *i*-th entry contains the value of probability that a surfer visits a web page *i*. Then w satisfies:

•
$$S^T w = w$$
,

- w has non-negative entries,
- sum of all entries in w is 1.

Problem

In general matrix $S^{\mathcal{T}}$ has many eigenvectors for $\lambda=1$ satisfying the above properties.

- 4 同 ト - 4 目 ト - 4 目

PageRank

Google matrix

Let α be the damping factor (e.g. $\alpha = 0.85$). Put

$$G = \alpha \cdot S + (1 - \alpha) \cdot \begin{pmatrix} 1 \\ \dots \\ 1 \end{pmatrix} \cdot \mathbf{v}^{T}$$

where v is a personalization vector with non-negative entries and sum of all entries equal to 1. It models teleportation.

Fact

The matrix G^T has a unique eigenvector for $\lambda = 1$ ($G^T \pi = \pi$) whose entries are non-negative and whose sum of all entries is 1.

Remark

Vector π in its *i*-th entry contains the PageRank of web page *i*.

All images used in this presentation come from wikipedia.org

イロト イポト イヨト イヨト

Э