
Linear mappings
Eigenvalues and eigenvectors

Geometric interpretation
Applications of eigenvalues and eigenvectors

Transition Maths and Algebra with Geometry

Tomasz Brengos

Lecture Notes
Electrical and Computer Engineering

Tomasz Brengos Transition Maths and Algebra with Geometry 1/37



Linear mappings
Eigenvalues and eigenvectors

Geometric interpretation
Applications of eigenvalues and eigenvectors

Contents

1 Linear mappings

2 Eigenvalues and eigenvectors

3 Geometric interpretation

4 Applications of eigenvalues and eigenvectors
PageRank

Tomasz Brengos Transition Maths and Algebra with Geometry 2/37



Linear mappings
Eigenvalues and eigenvectors

Geometric interpretation
Applications of eigenvalues and eigenvectors

Linear mappings: definition

Definition

Let V and W be two vector spaces over a field K. A mapping
F : V →W is called a linear mapping if it satisfies the following
conditions:

F (v1 + v2) = F (v1) + F (v2) for any v1, v2 ∈ V ,

λ · F (v) = F (λ · v) for any v ∈ V and λ ∈ K.

Let V = W = R. Any linear mapping from R to R is of the form

y = a · x

for some a ∈ R.
Standard examples of linear mappings: rotation by a given angle
(in more dimiensions), length multiplication etc.
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Linear mappings: basic facts

Theorem

For any linear mapping F : V →W we have

F (0) = 0.

Proof...

Theorem

Any mapping F : V →W is linear iff

F (λ ·v1+v2) = λ ·F (v1)+F (v2) for any v1, v2 ∈ V and any λ ∈ K.

Proof...
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Some more examples and counterexamples

Example

The following mapping f : R3 → R2 is linear:

f (x , y , z) = (x + y , z − x)

Example

The following mapping f : R3 → R2 is not linear:

f (x , y , z) = (x + y , 2z + 1)
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Linear mappings F : Kn → Km

Here, we will only focus on F : Kn → Km. The general case is
similar, yet symbolically more complicated. We will write all our
vectors as columns.

Theorem

Let A ∈ Mm
n (K) be an m × n matrix over K. The mapping

F : Kn → Km defined for any v ∈ Kn by

F (v) = A · v

is a linear mapping.
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Let

A =

(
1 2 0
−1 1 1

)
.

Let us write an explicit formula for mapping F (v) = A · v .
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Linear mappings F : Kn → Km

Here, we will only focus on F : Kn → Km. The general case is
similar, yet symbolically more complicated.

Theorem

Let F : Kn → Km be a linear mapping and let M(F ) be a matrix
defined by

M(F ) = (F (1, 0, . . . , 0)T ,F (0, 1, . . . , 0)T , . . . ,F (0, . . . , 0, 1)T ).

Then
F (v) = M(F ) · v .

Proof - homework!
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Example

Consider the linear mapping F : R3 → R2 given by:

F (x , y , z) = (x + y , z − x)

Let’s find M(F ).
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Linear mappings and matrices: examples

Given a vector v ∈ Kn the product Av can be thought of as the
image of v under the mapping A.

Example

Fix α ∈ [0, 2π) and consider the matrix Rα =

(
cosα − sinα
sinα cosα

)
.

What is the image Rαv for a vector v =

(
x
y

)
?

Example

Consider the matrix A =

(
3 0
0 2

)
. What is the image Av for a

vector v =

(
x
y

)
?
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Eigenvalue: definition(s)

Definition

Let A be a n × n matrix over the field K. A scalar λ ∈ K is called
eigenvalue of A if there is a non-zero vector v ∈ Kn such that

Av = λ · v.

Equivalently, the definition can be restated as follows.

Definition

Let A be a n × n matrix over the field K. A scalar λ ∈ K is called
eigenvalue of A if

det(A− λ · I ) = 0.
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Eigenvalue: definition(s)

Proof:
”⇒ ”: Let v be a non-zero vector such that for λ ∈ K satisfies:

Av = λ · v.

Hence,

Av − λ · v = 0,

(A− λ · I ) · v = 0

This means that the system (A− λ · I )X = 0 has a non-zero
solution. This is only when det(A− λ · I ) = 0.
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Eigenvalue: definition(s)

Proof:
”⇐ ”: Assume that for λ ∈ K we have det(A− λ · I ) = 0. This
means that there is a non-zero solution to the system
(A− λ · I )X = 0. Let v be this non-zero solution. Then

(A− λ · I ) · v = 0,

Av − λ · v = 0,

Av = λ · v.
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Eigenvectors

Definition

A vector v ∈ Kn is called an eigenvector for an eigenvalue λ if

A · v = λ · v.

Theorem

Let λ be an eigenvalue of A. The set Wλ of all eigenvectors for λ
is a subspace of Kn.

Proof: Note that 0 ∈Wλ. Moreover, for v1, v2 ∈Wλ we see that

A(v1 + v2) = Av1 + Av2 = λ · v1 + λ · v2 = λ · (v1 + v2).

Hence, v1 + v2 ∈Wλ. Similarily we prove that for v ∈Wλ, the
vector k · v belongs to Wλ for any k ∈ K.
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Example 1

A =

 1 0 2
0 −1 3
0 1 1

 A− λ · I =

 1− λ 0 2
0 −1− λ 3
0 1 1− λ


We calculate

det(A− λ · I ) =

∣∣∣∣∣∣
1− λ 0 2

0 −1− λ 3
0 1 1− λ

∣∣∣∣∣∣ =

(1− λ) ·
∣∣∣∣ −1− λ 3

1 1− λ

∣∣∣∣ = (1− λ) · ((−1− λ) · (1− λ)− 3) =

(1− λ) · (λ2 − 4) = (1− λ) · (λ− 2) · (λ+ 2).

The eigenvalues of A are 1, 2,−2.
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Example 1

 1 0 2
0 −1 3
0 1 1

−λ·
 1 0 0

0 1 0
0 0 1

 =

 1− λ 0 2
0 −1− λ 3
0 1 1− λ


For λ = 1 the eigenvectors are solutions to the following equation: 0 0 2

0 −2 3
0 1 0

 · X = 0
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Example 1

After row reduction we get an equivalent system: 0 1 0
0 0 1
0 0 0

 · X = 0

The solution space (the eigenvector space for λ = 1) is:

W1 = {

 x
0
0

 | x ∈ R}
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Example 1

For λ = 2 the eigenvectors are solutions to the following equation: −1 0 2
0 −3 3
0 1 −1

 · X = 0

After row reduction we get the following equivalent system: 1 0 −2
0 1 −1
0 0 0

 · X = 0
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Example 1

The solution space (the eigenvector space for λ = 2) is:

W2 = {

 2 · z
z
z

 | z ∈ R}
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Example 1

Finally λ = −2 the eigenvectors are solutions to the following
equation:  3 0 2

0 1 3
0 1 3

 · X = 0

After row reduction we get the following equivalent system: 1 0 2
3

0 1 3
0 0 0

 · X = 0
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Example 1

The solution space (the eigenvector space for λ = −2) is:

W−2 = {

 −2
3 · z
−3z
z

 | z ∈ R}
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Remarks

Fact

For a n× n matrix A there are at most n different eigenvalues of A.

Remark

It may happen so that a matrix A has no eigenvalues over a field K
or some eigenvalues are multiple ones.
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Example 2

Consider the matrix A over the field R:(
0 −1
1 0

)
Then:

det(A− λ · I ) =

∣∣∣∣ −λ −1
1 −λ

∣∣∣∣ = λ2 + 1.

The equation λ2 + 1 = 0 has no solution over R.
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Example 3

Consider the 3× 3 matrix I : 1 0 0
0 1 0
0 0 1


Then:

det(I − λ · I ) =

∣∣∣∣∣∣
1− λ 0 0

0 1− λ 0
0 0 1− λ

∣∣∣∣∣∣ = (1− λ)3.

The only solution is λ = 1.
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Basic properties

Fact

If λ is an eigenvalue of A then it also is an eigenvalue of AT .

Proof...
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Web graphs

Web graph:
Web pages = nodes,
Links = edges (arrows).
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Web graph example and stochastic matrix

1 // 2

3

OO @@

4

^^

oo

OO

Definition

In a web graph G for a vertex v let lv denote the number of
outgoing edges with a starting point v .

In our example l1 = 1, l2 = 0, l3 = 2, l4 = 3.

Definition

For any web graph G define its stochastic matrix S whose ij-th
entry sij equals 1

li
whenever there is a link from i to j otherwise

sij = 0. If li = 0 then we put sii = 1.
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Web graph example and stochastic matrix

1 // 2

3

OO @@

4

^^

oo

OO

S =


0 1 0 0
0 1 0 0
1
2

1
2 0 0

1
3

1
3

1
3 0


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Stochastic matrix

Fact

For a stochastic matrix S of a web graph G we have

0 ≤ sij ≤ 1 for any ij

S ·

 1
. . .
1

 =

 1
. . .
1


λ = 1 is an eigenvalue of S (and ST ).
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Stochastic matrix

Let w be vector whose i-th entry contains the value of probability
that a surfer visits a web page i . Then w satisfies:

STw = w ,

w has non-negative entries,

sum of all entries in w is 1.

Problem

In general matrix ST has many eigenvectors for λ = 1 satisfying
the above properties.
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Google matrix

Let α be the damping factor (e.g. α = 0.85). Put

G = α · S + (1− α) ·

 1
. . .
1

 · vT
where v is a personalization vector with non-negative entries and
sum of all entries equal to 1. It models teleportation.

Fact

The matrix GT has a unique eigenvector for λ = 1 ( GTπ = π)
whose entries are non-negative and whose sum of all entries is 1.

Remark

Vector π in its i-th entry contains the PageRank of web page i .
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All images used in this presentation come from wikipedia.org
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